KINGS LYNN COMPRESSOR STATION – IGE/TD/12 FATIGUE ANALYSIS OF BI-DIRECTIONAL AREA PIPING

Confidential

Restricted to,

CUSTOMER	CUSTOMER CONTACT	CUSTOMER ADDRESS	CUSTOMER REF: NO.
PROJECT NO:	REPORT NO:	PROJECT FILE	KEYWORDS
-P0488	-R0711-21	-F0488	STRESS ANALYSIS, IGE/TD/12

EXTERNAL DISTRIBUTION LIST	COMPANY

INTERNAL DISTRIBUTION LIST	LOCATION
Project File	-F0488
Library File	Technical Section

01 00	16/12/21 13/10/21				Including Modifications Draft for Client Comment
Revision	Date	Author Signature	Verifier Signature	Approver Signature	Status

REVISION STATUS INDEX								
SUMMARY OF CHANGES	SECTION	REVISIONS						
	NUMBER	1	2	3	4	5	6	
Includes results for removal of all pits and backfill with soft fill (only updated results table so far). 900mm x 50mm (6160) weldolet exception removed		1 X X	2	3	4	5	6	

Executive Summary

Kings Lynn compressor station was commissioned in 1971 and over the years has been subject to significant modifications, concerning both piping arrangement and operating conditions; most notably the installation of the bi-directional pipework in 1998 and pigging loop in 2003. National Grid hope to achieve continued operation of the bi-directional area up to 2050 and have requested a fatigue study be undertaken to consider both past and future usage, giving due consideration to the modifications stated.

Pressure and temperature cycling data for the site have been provided from July 2015 to August 2021, which is to be used for predicting past and future fatigue usage from 1998 to 2050. In the absence of site operating conditions pre-installation of the bidirectional area it is proposed to consider Industry Best Practice operating conditions, in accordance with IGE/TD/12, when considering fatigue usage from 1971 to 1998.

The purpose of this study is to:

- Perform a rainflow-counting analysis to determine the number of discrete pressure and temperature cycles between 2015 and 2021, for forward and reverse flow operation.
- Create piping models to consider the significant piping arrangement changes between 1971 and 2003.
- Perform a fatigue assessment of the site to the requirements of IGE/TD/12 taking into account past and future operation to 2050.
- Identify which fittings, if any, would be at risk of failing by fatigue.

The purpose of this report is to describe the analysis that was undertaken, to set out the conclusions and to make any recommendations as is necessary.

Conclusions

- 1. National Grid have provided temperature and pressure data recorded at Kings Lynn compressor station between 2015 and 2021.
 - i. The data has been censored to remove negative pressures.
 - ii. The temperature data has not been utilised due to numerous occurrences of unrealistic sub-zero and >50°C readings.
- 2. A Rainflow-counting analysis has been undertaken of the censored pressure data to determine the number of discrete pressure cycles for the loadcase pressure ranges recommended in IGE/TD/12.
- 3. Piping stress models have been created to capture the significant piping arrangement modifications from 1971 to 2021.
- 4. Fatigue analyses have been assessed to consider both non-factored and factored (factor of 10 on actual cycles) fatigue usage when considering future operation.

- 5. IGE/TD/12 fatigue analyses have been undertaken to determine the cumulative fatigue usage since commissioning to 2050.
- 6. For the existing piping arrangement, with non-factored fatigue usage, there are four fatigue code stress exceptions located at two 900mm x 50mm weldolets and two 900mm x 200mm sweepolets.
 - i. The highest fatigue exception is 15.36 at a 900mm x 200mm sweepolet located at Node 15990.
- 7. For the existing piping arrangement with factored fatigue usage there are eight fatigue code stress exceptions, the exceptions are located at:
 - two 900mm x 50mm weldolets,
 - four 900mm x 200mm sweepolets,
 - one 900mm x 900mm tee, and
 - one 900mm x 300mm sweepolet.
 - i. The highest fatigue exception is 46.64 at a 900mm x 200mm sweepolet located at Node 15990.
- 8. Whilst the fatigue usage values appear high it should be borne in mind that they are proportional to the cube of the stress ranges. It follows that it may be possible to show acceptability of the fittings by undertaking a more detailed design-by-analysis assessment involving the finite element method to remove the conservatism from the stress concentration factors.
- 9. National Grid have also requested a fatigue study to be performed considering the removal of three pits on Feeder 2. These results are reported in Appendix B. For the models considering the proposed removal of the pits on Feeder 2.
 - i. The same fatigue exceptions remain; however the maximum fatigue usage at Node 15990 reduces to 21.22.
 - ii. The fatigue usage at two sweepolets is marginally exacerbated by the removal of all three pits.
- 10. An additional assessment has been undertaken to consider the effects of removing Pit-2 and Pit-3 only.
 - i. The predicted fatigue usage is either lower or remains unchanged from that observed in the existing configuration.
 - ii. A summary of all assessments considered herein is provided in Table 14 and Table 15 for soft and firm soil properties respectively.

Recommendations

National Grid to advise which pits, if any, on Feeder 2 are to be removed and the forces and moments from the appropriate models should be used in the Stage-2 assessment.

National Grid to advise if the pits on Feeder 2 are to be removed and the forces and moments from the appropriate models should be used in the Stage 2 assessment.

1 INTRODUC	TION	7
1.1 Purp)0Se	7
1.2 Scop	De	7
2 MODELLIN	IG	8
	vings	
2.2 CAE	SAR II Models	8
	ГА	
4 OPERATIN	G CONDITIONS	9
	rating Temperatures	10
	rating Pressures	10
	gue Cycles	
	riod 1971 to 1998	
	eriod 1998 to 2050	
	Case-1 (No Factoring of Cycles)	
4.3.2.2	Case-2 (Factoring of Cycles)	11
4.4 Load	lcases	11
	PE MODELLING	
	CRITERION	
7 RESULTS.		
	od 1971 to 1998	
	od 1971 to 2003	-
	od 1971 to 2021	
-	od 1971 to 2050	
	ase-1 (No Factoring of Cycles)	
	ase-2 (Factoring of Cycles)	
	mary of Fatigue Results	
	D REMOVAL OF PITS ON FEEDER 2 PIPING	
	IONS	
	MENDATIONS	
	NCES	
APPENDIX A		
APPENDIX B	PROPOSED REMOVAL OF PITS ON FEEDER 2 PIPING	39

1 INTRODUCTION

Kings Lynn compressor station was commissioned in 1971 and over the years has been subject to significant modifications concerning both piping arrangement and operating conditions; most notably the installation of the bi-directional pipework in 1998 and pigging loop in 2003. National Grid hope to achieve continued operation of the bi-directional area up to 2050 and have requested a fatigue study be undertaken to consider both past and future usage, giving due consideration to the modifications stated.

Pressure and temperature cycling data for the site has been provided from July 2015 to August 2021, which is to be used for predicting past and future fatigue usage from 1998 to 2050. In the absence of site operating conditions pre-installation of the bi-directional area it is proposed to consider Industry Best Practice operating conditions, in accordance with IGE/TD/12, when considering fatigue usage from 1971 to 1998.

1.1 Purpose

The purpose of this study is to:

- Perform a Rainflow-counting analysis to determine the number of discrete pressure and temperature cycles between 2015 and 2021, for forward and reverse flow operation.
- Construct piping models to consider the significant piping arrangement changes between 1971 and 2003.
- Perform a fatigue assessment of the site to the requirements of IGE/TD/12 taking into account past and future operation to 2050.
- Identify which fittings, if any, would be at risk of failing by fatigue.

The purpose of this report is to describe the analysis that was undertaken, to set out the conclusions and to make any recommendations as is necessary.

1.2 Scope

The extent of the pipework consider for the fatigue assessment at Kings Lynn compressor station, including location of pits, is shown in Figure 1.

2 MODELLING

2.1 Drawings

In addition to the referenced national, international and National Grid standards, the following drawings and material take-offs have been provided and used where necessary.

Drawing Number	Issue	Title
National Grid		
20210810 Kings Lynn Compressor.xlsx		Kings Lynn Pressure and Temperature Cycling Data – 2015 to 2021

2.2 CAESAR II Models

Pipe stress models have been created using CAESAR II v12 ^[2]. This version of the software assesses pipework code compliance according to IGE/TD/12 (Edition 2, 2003), and is approved by National Grid for this purpose

The following piping models have been created of the site in 1971.

Models: Period 1971-1998

- 1971_FIRM_CLAY.C2
- 1971_SOFT_CLAY.C2

The following models have been created including addition of the bi-directional area in 1998.

Models: Period 1998-2003

- 1998_FF_FIRM_CLAY.C2
- 1998_FF_SOFT_CLAY.C2
- 1998_RF_FIRM_CLAY.C2
- 1998_RF_SOFT_CLAY.C2

The following models have been created including addition of the pigging loop in 2003.

Models: Period 2003-2021

- 2003-2021_FF_FIRM_CLAY.C2
- 2003-2021_FF_SOFT_CLAY.C2
- 2003-2021_RF_FIRM_CLAY.C2
- 2003-2021_RF_SOFT_CLAY.C2

Models: Period 2021-2050 (No safety factor)

- 2021-2050_FF_FIRM_CLAY.C2
- 2021-2050_FF_SOFT_CLAY.C2
- 2021-2050_RF_FIRM_CLAY.C2
- 2021-2050_RF_SOFT_CLAY.C2

Models: 2021-2050: (Safety Factor of 10 on future cycles)

National Grid have requested an additional assessment case be considered, assuming a safety factor of 10 applied to the future operating cycles, from 2021 to 2050^{[10].} to account for uncertainty of the site operating conditions. The following models have been created assuming a safety factor of 10 applied to the future operating cycles, from 2021 to 2050.

- 2021-2050_x10_FF_FIRM_CLAY.C2
- 2021-2050_x10_FF_SOFT_CLAY.C2
- 2021-2050_x10_RF_FIRM_CLAY.C2
- 2021-2050_x10_RF_SOFT_CLAY.C2

3 INPUT DATA

Piping and fitting input data is as per that reported in **EXAMPLE**-R0706-21-01^[3].

4 OPERATING CONDITIONS

IGE/TD/12 contains a list of loadcases and required number of cycles to be considered for a fatigue assessment. However, it only provides guidance for the pressure and temperature ranges which the loadcases should consider.

Where site specific data is not available loadcases are assessed assuming Industry Best Practice pressure and temperature ranges, as shown in Table 3 and Table 4.

National Grid have provided pressure and temperature data recorded from July 2015 to August 2021 ^[4], and it is assumed the operating conditions at the site have not changed since installation of the bi-directional area in 1998. It is therefore proposed to use the supplied operating data when considering fatigue usage from installation of the bi-directional area to the target design life (2050).

Figure 2 and Figure 3 show the recorded pressure data readings between 2015 and 2021 for forward and reverse flow operation, respectively. It can be seen there are periods of time for which negative pressure was recorded. These are assumed to be reading errors and have therefore been amended to 0 barg, as shown in Figure 4 and Figure 5 for forward and reverse flow operation, respectively.

The data also included temperature readings ranging from -30°C to +58°C, which have been deemed unreliable. Consequently, the temperature reading data has not been used and site specific temperatures provided in **_____**-R0706-21 have been considered, as outlined in the following section.

4.1 Operating Temperatures

Taking guidance from IGE/TD/12 and T/SP/PW/13^[5] the following temperatures have been used;

 Above ground maximum and minimum design temperatures of +50°C and -20°C, respectively.

Forward Flow (Kings Lynn to Bacton)

For forward flow the following temperatures have been used:

- An assumed minimum below ground temperature of 5°C.
- Maximum below ground, suction and discharge, flow temperature of 15°C and 47°C respectively^[6].
- Minimum below ground suction temperature of 8°C ^[7].
- Assumed minimum below ground discharge temperature of 37°C, to produce a temperature swing of 10°C from the maximum, as per industry best practice.

Reverse Flow (Bacton to Kings Lynn)

For reverse flow the following temperatures have been used:

- An assumed minimum below ground temperature of 5°C.
- Maximum below ground, suction and discharge, flow temperature of 18°C and 47°C respectively ^[6].
- Minimum below ground suction temperature of 8°C ^[7].
- Assumed minimum below ground discharge temperature of 37°C, to produce a temperature swing of 10°C from the maximum, as per industry best practice.

4.2 Operating Pressures

To satisfy the pressure ranges to be considered the following pressures have been applied:

- MIP 79.5 barg
- MOP 75 barg
- Compressor Operating 60 barg
- Winter Demand Pressure 69 barg

• Summer Demand Pressure – 70 barg

Temperatures and pressures used for the analyses are provided in Table 1 and Table 2.

4.3 Fatigue Cycles

The number of fatigue cycles for each construction phase is outlined below.

4.3.1 Period 1971 to 1998

From the original construction date to installation of the bi-directional area is 27 years. The fatigue cases and corresponding required number of cycles, as per IGE/TD/12, for this time period are provided in Table 4.

4.3.2 Period 1998 to 2050

4.3.2.1 Case-1 (No Factoring of Cycles)

It is assumed the operating conditions of the site remain unchanged since installation of the bi-directional area in 1998. It is therefore proposed to use the pressure cycling data provided in Ref. [4] to determine the fatigue usage from 1998 to 2050.

The rainflow-counting method has been used to count the number of discrete pressure cycles for the pressure ranges shown in Table 3 and Table 4 for forward and reverse flow, respectively.

To consider the changes to the site piping arrangement since installation of the bidirectional area the required number of cycles have been separated into the time periods: 1998 to 2003; 2003 to 2021 and 2021 to 2050. The number of fatigue cycles considered, and model identifiers, are provided in Table 5.

4.3.2.2 Case-2 (Factoring of Cycles)

To account for uncertainty of the future site operating conditions National Grid have requested an additional assessment case be considered, assuming a safety factor of 10 applied to the future operating cycles, from 2021 to 2050^[10]. The number of fatigue cycles considered, and model identifiers, are provided in Table 6.

4.4 Loadcases

Using the pressure, temperature and cycling conditions outlined above a loadcase table was created in accordance with the guidance of IGE/TD/12. The loadcase table as entered into CAESAR II is shown in Table 5 and Table 6 for the two cases respectively.

5 BURIED PIPE MODELLING

For this analysis the soil restraint has been calculated using the American Lifelines Alliance^[8] methodology built into CAESAR II. This is in accordance with the recommendations in IGE/TD/12.

Historic boreholes have been provided for Kings Lynn Compressor Station, the locations of which are shown in 0. At the depths considered, the boreholes indicate the ground varies between fine to medium sand and soft to stiff clay. In view of this the models have been analysed using conservative lower bound and upper bound soil restraint. The lower bound analysis is based on the assumption that soil behaves as a soft clay, whilst the upper bound analysis is based on the assumption that soil behaves as a firm clay, where these two soil types are defined in NEN 3650^[9].

For the lower bound soil restraint, the water table is conservatively assumed to be at the surface and for the upper bound soil restraint the water table is assumed to be below the pipe.

The soil properties used are shown in Table 7, whilst the information as entered into CAESAR II is shown in Table 8 and Table 9.

6 FATIGUE CRITERION

The fatigue analysis considers variations in the principal stresses over the life of the installation due to normal expected operation. The fatigue life considers the variation of the pressure and temperature loads from a notional starting point. Therefore, the calculated stresses represent ranges and are used with the appropriate fatigue class curve to evaluate the allowable number of cycles. This is performed for each of the fatigue duties and a Miner's Law summation is performed to determine the cumulative fatigue damage, which should not exceed unity.

The 'target' design life of the site is set at 2050.

The maximum permitted number of cycles, N, for a corresponding peak stress range, S_R , is given by:

$$N = \frac{A}{S_R^m},$$
 [1]

where S_R is the maximum principal stress range.

Values for the constants m and A appearing in the above expression are provided in TD/12 for various classes of weld, which relate different component types.

For variable pressure cycling, the total fatigue damage (D_f) is then calculated using the Miner's Law summation for the periods of construction and operation and is given by the following;

$$D_f = \sum \left[\frac{n_i}{N_i}\right]_{1971-1998} + \sum \left[\frac{n_i}{N_i}\right]_{1998-2003} + \sum \left[\frac{n_i}{N_i}\right]_{2003-2021} + \sum \left[\frac{n_i}{N_i}\right]_{2021-2050}$$
[2]

Where n_i is the actual number of cycles and N_i is the maximum permitted number of cycles for a given pressure fluctuation. For Case 2, n is increased by factor of 10 for the 2021-2050 period of operation.

For an acceptable fatigue life, the total fatigue damage (Df) should be less than unity.

7 RESULTS

Occurrences of fatigue damage that exceed unity are termed 'exceptions'. Results are provided from original commissioning (1971) to the various periods of construction phases and future operation showing how the fatigue damage accrues over time.

7.1 Period 1971 to 1998

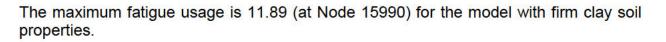
Considering fatigue cycling from 1971 to 1998, the predicted usage is greater than unity at three locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6160).
- 900mm x 50mm weldolet (Node 6220).
- 900mm x 200mm sweepolet (Node 15990).

The maximum fatigue usage is 9.21 (at Node 15990) for the model with firm clay soil properties.

7.2 Period 1971 to 2003

Considering fatigue cycling from 1971 to 2003, the predict usage is greater than unity at three locations. A summary of the exceptions is shown below:


- 900mm x 50mm weldolet (Node 6160).
- 900mm x 50mm weldolet (Node 6220).
- 900mm x 200mm sweepolet (Node 15990).

The maximum fatigue usage is 9.75 (at Node 15990) for the model with firm clay soil properties.

7.3 Period 1971 to 2021

Considering fatigue cycling from 1971 to 2021, the predict usage is greater than unity at four locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6160).
- 900mm x 50mm weldolet (Node 6220).
- 900mm x 200mm sweepolet (Node 15990).
- 900mm x 200mm sweepolet (Node 15040).

7.4 Period 1971 to 2050

7.4.1 Case-1 (No Factoring of Cycles)

Considering fatigue cycling from 1971 to 2050, the predict usage is greater than unity at four locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6160).
- 900mm x 50mm weldolet (Node 6220).
- 900mm x 200mm sweepolet (Node 15990).
- 900mm x 200mm sweepolet (Node 15040).

The maximum fatigue usage is 15.36 (at Node 15990) for the model with firm clay soil properties.

The locations of the fatigue exceptions are shown in Figure 9 and details are provided in Table 10 and Table 11.

7.4.2 Case-2 (Factoring of Cycles)

For the Case-2 assessment, whereby the number of fatigue cycles for 2021 to 2050 have been increased by a factor of 10 to take into account uncertainty in future operation, the predict usage is greater than unity at nine locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6160)
- 900mm x 50mm weldolet (Node 6220)
- 900mm x 50mm weldolet (Node 15920)
- 900mm x 200mm weldolet (Node 410)
- 900mm x 200mm weldolet (Node 480)
- 900mm x 200mm sweepolet (Node 15990)
- 900mm x 200mm sweepolet (Node 15040)
- 900mm x 300mm sweepolet (Node 6070)
- 900mm x 900mm Tee (Node 6180)

The maximum fatigue usage is 46.64 (at Node 15990) for the model with firm clay soil properties.

The locations of the fatigue exceptions are shown in Figure 9 and details are provided in Table 12 and Table 13.

8 PROPOSED REMOVAL OF PITS ON FEEDER 2 PIPING

National Grid have requested that an additional assessment be considered whereby the three remaining pits located on the Feeder 2 piping are demolished and back-filled with native soil. Details of the effect of the proposed removal of the pits on Feeder 2 are provided in Appendix B.

Comparing the results for Case-1 (non-factored fatigue usage from 2021 to 2050) it can be seen the removal of the pits has a beneficial effect on a 900mm x 200mm sweepolet (node 15990). Whist the fatigue usage at a 900mm x 200mm sweepolet (node 15040) is marginally exacerbated by the proposed modifications.

Comparing the results of Case-2 (fatigue usage factored from 2021 to 2050) it can be seen the removal of the pits has a beneficial effect on a 900mm x 200mm sweepolet (node 15990). Whilst the fatigue usage at a 900mm x 200mm sweepolet (node 15040) and 900mm x 50mm weldolet (node 15920) is marginally exacerbated.

In light of the results discussed above, and in an attempt to better understand the influence of each pit, an additional study has been undertaken to consider the effects of removing Pit-2 and Pit-3 only. The results of the study are presented in Appendix C.

It is shown that the predicted fatigue usage is either lower or remains the same as that predicted for the existing piping arrangement. A summary of the results for all assessments considered herein are provided in Table 14 and Table 15 for soft and firm clay soil properties, respectively.

National Grid are to advise if the pits on Feeder 2 are to be removed and the forces and moments from the appropriate models should be used in the Stage-2 assessment.

9 SUMMARY OF FATIGUE RESULTS

Whilst the fatigue usage values appear high it should be borne in mind that they are proportional to the cube of the stress ranges. It follows that it may be possible to show acceptability of the fittings by undertaking a more detailed design-by-analysis assessment involving the finite element method to remove the conservatism from the stress concentration factors.

Fittings of the same type and size were identified as having code stress exceptions in report **_____**-R0706-21, which require resolution. It is therefore recommended the exceptions identified herein are included in the scope of works for the Stage-2 programme of work.

The fittings

10 CONCLUSIONS

- 1. National Grid have provided temperature and pressure data recorded at Kings Lynn compressor station between 2015 and 2021.
 - i. The data has been censored to remove negative pressures.
 - ii. The temperature data has not been utilised due to numerous occurrences of unrealistic sub-zero and >50°C readings.
- A Rainflow-counting analysis has been undertaken of the censored pressure data to determine the number of discrete pressure cycles for the loadcase pressure ranges recommended in IGE/TD/12.
- 3. Piping stress models have been created to capture the significant piping arrangement modifications from 1971 to 2021.
- 4. Fatigue analyses have been assessed to consider both non-factored and factored (factor of 10 on actual cycles) fatigue usage when considering future operation.
- 5. IGE/TD/12 fatigue analyses have been undertaken to determine the cumulative fatigue usage since commissioning to 2050.
- For the existing piping arrangement, with non-factored fatigue usage, there are four fatigue code stress exceptions located at two 900mm x 50mm weldolets and two 900mm x 200mm sweepolets.
 - i. The highest fatigue exception is 15.36 at a 900mm x 200mm sweepolet located at Node 15990.
- 7. For the existing piping arrangement with factored fatigue usage there are eight fatigue code stress exceptions, the exceptions are located at:
 - two 900mm x 50mm weldolets,
 - four 900mm x 200mm sweepolets,
 - one 900mm x 900mm tee, and
 - one 900mm x 300mm sweepolet.
 - i. The highest fatigue exception is 46.64 at a 900mm x 200mm sweepolet located at Node 15990.
- 8. Whilst the fatigue usage values appear high it should be borne in mind that they are proportional to the cube of the stress ranges. It follows that it may be possible to show acceptability of the fittings by undertaking a more detailed design-by-analysis assessment involving the finite element method to remove the conservatism from the stress concentration factors.
- 9. National Grid have also requested a fatigue study to be performed considering the removal of three pits on Feeder 2. These results are reported in Appendix B. For the models considering the proposed removal of the pits on Feeder 2.

- i. The same fatigue exceptions remain; however the maximum fatigue usage at Node 15990 reduces to 21.22.
- ii. The fatigue usage at two sweepolets is marginally exacerbated by the removal of all three pits.
- 10. An additional assessment has been undertaken to consider the effects of removing Pit-2 and Pit-3 only.
 - i. The predicted fatigue usage is either lower or remains unchanged from that observed in the existing configuration.
 - ii. A summary of all assessments considered herein is provided in Table 14 and Table 15 for soft and firm soil properties respectively.

11 RECOMMENDATIONS

For the fittings which exceed the IGE/TD/12 fatigue assessment criterion it is recommended a more detailed finite element analysis is undertaken to better understand the level and distribution of stress in the fitting.

Fittings of the same type and size were identified as having code stress exceptions in report **_____**-R0706-21, which require resolution. It is therefore recommended the exceptions identified herein are included in the scope of works for the Stage-2 programme of work.

National Grid to advise which pits, if any, on Feeder 2 are to be removed and the forces and moments from the appropriate models should be used in the Stage-2 assessment.

12 REFERENCES

- IGE/TD/12 Edition 2, Reprint with Amendments, Communication 1757, 2012, Pipework Stress Analysis for Gas Industry Plant, Institution of Gas Engineers & Managers.
- 2. CAESAR II v12 SP1 12.00.01.0015, (Build 210109).
- -R0706-21, 'Kings Lynn Compressor Station Integrity Assessment of Bidirectional Pipework Affected by Ground Subsidence', 13/09/21.
- 4. Email from , 'Kings Lynn bidirectional area – historical flow records', Tue 10/08/2021 15:39.
- 5. T/SP/PW/13, Specification for Carrying Out Pipework Stress Analysis to the Requirements of IGE/TD/12, National Grid, September 2011.
- 6. **1999**. Kings Lynn Compressor Station Stress Analysis Rev 1', September
- 7. Email from the second secon
- 8. Guidelines for the Design of Buried Steel Pipe, American Lifelines Alliance.

- NEN3650-1+C1:2017, Requirements for Pipeline Systems, Nederlands Normalisatie Institute.
- 10. Technical Query Form, 'Kings Lynn Bi-directional Area Fatigue Analysis Cycles', 01/10/2021.

TABLES

CAESARII			Temper	Temperature (°C)			
Designation	Description	Suc	Suction		harge		
		Above Ground	Below Ground	Above Ground	Below Ground		
T1	Max, no flow	50	15	50	15		
T2	Max Winter	25	15	25	47		
Т3	Min, no flow	-20	5	-20	5		
Т4	Min Winter, flow	-20	8	-20	37		
Т5	Min Summer, flow	10	8	10	37		
CAESARII Designation	Desc	ription		Pressure (ba	rg)		
P1	Ν	IIP		79.5			
P2	М		75				
P3	Compresso	or Operating		60			
P4	Winter	Demand		69			
P5	Summer	Demand		70			

Table 1 – Temperature and Pressure Table – Forward Flow (KL to Bacton)

CAECADI		Temperature (°C)					
CAESARII Designation	Description	Suc	tion	Discharge			
		Above Ground	Below Ground	Above Ground	Below Ground		
T1	Max, no flow	50	18	50	47		
T2	Max Winter	25	18	25	47		
Т3	Min, no flow	-20	5	-20	5		
T4	Min Winter, flow	-20	8	-20	37		
Т5	Min Summer, flow	10	8	10	37		
CAESARII	Desc	ription		Pressure (bai	·g)		

Designation	Description	Pressure (barg)
P1	MIP	79.5
P2	MOP	75
P3	Compressor Operating	60
P4	Winter Demand	69
P5	Summer Demand	70

Table 2 – Temperature and Pressure Table – Reverse Flow (Bacton to KL)

		Pressure		Temperature (°C)				
IGE/TD/12	Pressure	Range	Suc	Suction		arge		
Loadcase	(bar)	(barg)	Above Ground	Below Ground	Above Ground	Below Ground	Operating Status	TD/12 Assessment
6a	79.5	79.5	50	15	50	47	Fault conditions	4
6b	0	79.5		Tie-in			Fault conditions	
7a	75	75	50	15	50	47	Annual commissioning and	
7b	0	/5		Tie-in decommissioning		decommissioning		
8a	75	15	25	15	25	47	Comproport station energian*	Estigue Analysia
8b	60		-20	5	-20	5	Compressor station operation*	Fatigue Analysis
9a	75	-	25	15	25	47	Winter diurnal*	
9b	69	6	-20	8	-20	37		
10a	75	5	50	15	50	47	Oursease and the second state]
10b	70	5	10	8	10	37	Summer diurnal*	

Table 3 – Loadcase Table – Forward Flow (KL to Bacton)

*Industry Best Practice pressure range

			Temperature (°C)						
IGE/TD/12	Pressure	Pressure	Suction Discharge			TD/12			
Loadcase	(bar)	Range (barg)	Above Ground	Below Ground	Above Ground	Below Ground	Operating Status	No. of Cycles	TD/12 Assessment
6a	79.5	79.5	50	18	50	47	- Fault conditions	5	
6b	0	79.5			Tie-in		Fault conditions	[4]*	
7a	75	75	50	18	50	47	Annual commissioning	40 [27]*	
7b	0	75		5	Tie-in		and decommissioning		
8a	75	15	25	18	25	47	Compressor station	1000	Fatigue
8b	60	15	-20	5	-20	5	operation	[675]*	Analysis
9a	75	6	25	18	25	47	Winter dium al	8000	
9b	69	0	-20	8	-20	37	Winter diurnal	[5400]*	
10a	75	5	50	18	50	47	- Summer diurnal	6000	
10b	70	5	10	8	10	37		[4050]*	

Table 4 – Loadcase Table – Reverse Flow (Bacton to KL)

*Fatigue usage from 1971 to 1998

			Number of Cycles									
Case	Combination	Identifier	IGE/TD/12			Rainflow-counting						
Case			Models: 1	971-1998*	Models: 1	998-2003*	Models: 2	003-2021*	Models: 2	021-2050*		
-			Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow		
L1	W+T1+P1	OPE						ar ar	CLAY	~~		
L2	W	OPE				AY AY	AV			CLAY		
L3	W+T1+P2	OPE		dels: - cray	odels: T_CLAY M_CLAY	<u>II Models:</u> SOFT_CLA FIRM_CLA	M_CL	OFT NRM	SoFT_SOFT_			
L4	W+T2+P2	OPE		SOFT SOFT	Caesar II Models: 1971_SOFT_CLAY 1971_FIRM_CLAY 2971_FIRM_CLAY Caesar II Models: 1998_FF_SOFT_CLAY 1998_FF_FIRM_CLAY	<u>Caesar II Mod</u> 1998_RF_SOFT 1998_RF_FIRM	<u>Caesar II M</u> 2003_FF_SOI 2003_FF_FIR	N I N	Caesar II Model 2021-2050_FF_S0FT 2021-2050_FF_FIRM	<u>Caesar II M</u> 2021-2050_RF_5 2021-2050_RF_5		
L5	W+T3+P3	OPE		971_971_				<u>Caesar II Models:</u> 2003_RF_SOFT_CLAY 2003_RF_FIRM_CLAY				
L6	W+T4+P4	OPE		044				50 02				
L7	W+T5+P5	OPE			76		19a			N N		
L8	L1-L2	FAT	0	4	0	0	4	4	2	2		
L9	L3-L2	FAT	0	27	1	2	12	22	7	13		
L10	L4-L5	FAT	0	675	5	53	46	502	29	310		
L11	L4-L6	FAT	0	5400	31	81	294	765	181	472		
L12	L3-L7	FAT	0	4050	139	265	1310	2495	809	1539		

Table 5- Loadcase Combinations for CAESAR II – Existing Piping Arrangement – Case-1

*See Section 2.2 for applicable models

	Combination		Number of Cycles								
Case		Identifier	IGE/TD/12 Models: 1971-1998*		Rainflow-counting						
Case					Models: 1998-2003*		Models: 2	003-2021*	Models: 2021-2050*		
4			Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	
L1	W+T1+P1	OPE							CLAY	CLAY	
L2	W	OPE				AV AV		A V			
L3	W+T1+P2	OPE		Caesar II Models: 1971_SOFT_CLAY 1971_FIRM_CLAY 1971_FIRM_CLAY Caesar II Models: 1998_FF_SOFT_CLAY 1998_FF_FIRM_CLAY	CLAN			Pdels: T_CLAY		FIRI	Models:
L4	W+T2+P2	OPE			N S S	II Moo	N I I N	10_F	X10_RI X10_RI		
L5	W+T3+P3	OPE		971_971_	Caesar 1971_1 1971_1 1971_1 1998_FF	Caesar II Models: 1998_RF_SOFT_CLAY 1998_RF_FIRM_CLAY	33_FF	2003_FF_SOFT_CLAV 2003_FF_FIRM_CLAV Caesar II Models: 2003_RF_SOFT_CLAY 2003_RF_FIRM_CLAY	50_X1		
L6	W+T4+P4	OPE		0 A A			2 2 C		Gaesar II Models: 2021-2050_X10_FF_S0F1 2021-2050_X10_FF_FIRM	Cae 2021-2050_ 2021-2050_	
L7	W+T5+P5	OPE	13						202	202	
L8	L1-L2	FAT	0	4	0	0	4	4	20	20	
L9	L3-L2	FAT	0	27	1	2	12	22	70	1320	
L10	L4-L5	FAT	0	675	5	53	46	502	290	3100	
L11	L4-L6	FAT	0	5400	31	81	294	765	1810	4720	
L12	L3-L7	FAT	0	4050	139	265	1310	2495	8090	15390	

Table 6- Loadcase Combinations for CAESAR II – Existing Piping Arrangement – Case-2

*See Section 2.2 for applicable models

Soil Type	Effective Density (kg/m³)	Effective Cohesion c' (kN/m ²)
Cohesive – Lower Bound	427	25
Cohesive – Upper Bound	2039	200

Table 7 – Soil Strength Parameters

LOWER	
GAMMA PRIME – EFFECTIVE SOIL DENSITY (kg/cu.m.)	1427
H – BURIED DEPTH TO TOP OF PIPE (mm.)	Varies
C – SOIL COHESION OF BACKFILL (N./sq.mm.)	0.025
ALPHA – ADHESION FACTOR (CALCULATED IF	
OMITTED)	
dT – YIELD DISP FACTOR, AXIAL (mm.)	10
dP – YIELD DISP FACTOR, LAT, MAX MULTIPLE OF D	0.15
dQu – YIELD DISP FACTOR, UPWARD, MULTIPLE OF H	0.2
dQu – YIELD DISP FACTOR, UP, MAX MULTIPLE OF D	0.2
dQd – YIELD DISP FACTOR, DOWN, MULTIPLE OF D	0.2
THERMAL EXPANSION COEFFICIENT xE-6 (L/L/deg C)	11.2131
TEMPERATURE CHANGE, Install-Operating (deg C)	

Table 8 – CAESAR II Soil Input, Soft Clay (Lower Bound)

LOWER	
GAMMA PRIME – EFFECTIVE SOIL DENSITY (kg/cu.m.)	2039
H – BURIED DEPTH TO TOP OF PIPE (mm.)	Varies
C – SOIL COHESION OF BACKFILL (N./sq.mm.)	0.2
ALPHA – ADHESION FACTOR (CALCULATED IF	
OMITTED)	
dT – YIELD DISP FACTOR, AXIAL (mm.)	7.5
dP – YIELD DISP FACTOR, LAT, MAX MULTIPLE OF D	0.1
dQu - YIELD DISP FACTOR, UPWARD, MULTIPLE OF H	0.1
dQu - YIELD DISP FACTOR, UP, MAX MULTIPLE OF D	0.2
dQd - YIELD DISP FACTOR, DOWN, MULTIPLE OF D	0.2
THERMAL EXPANSION COEFFICIENT xE-6 (L/L/deg C)	11.2131
TEMPERATURE CHANGE, Install-Operating (deg C)	

Table 9 – CAESAR II Soil Input, Firm Clay (Upper Bound

Report Number:	
Revision: 00	

Node		Fitting Type		Fatigue Usage							
	Node		1971 to 1998	1998 to	o 2003	2003 to 2021 2021 to 2050		o 2050	Cumulative		
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)		
2	15990	900x200 Sweepolet	1.74	0.1	0	0.42	0.01	0.68	0.01	2.96	

Table 10 – Fatigue Exceptions – Soft Clay – Case-1

					Fatig	ue Usage			
Node		1971 to 1998	1998 to	o 2003	2003 to	2021	2021 to 2050 Cum		Cumulative
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)
6220	900x50 Weldolet	1.35	0.06	0	0	0	0	0	1.41
15990	900x200 Sweepolet	9.21	0.53	0.01	2.12	0.02	3.44	0.03	15.36
15040		0.97	0.01	0.01	0.07	0.02	0.11	0.04	1.23

Table 11 – Fatigue Exceptions – Firm Clay – Case-1

Node Fitti	Eitting Tupo		Fatigue Usage							
Noue	Fitting Type	1971 to 1998	1998 to 2003	2003 to 2021	2021 to 2050					

Report Number:	
Revision: 00	

		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Cumulative Fatigue Damage (D _f)
15990	900x200 Sweepolet	1.74	0.1	0	0.42	0.02	6.79	0.11	9.18
480		0	0	0	0.06	0	0.92	0.04	1.02

Table 12 – Fatigue Exceptions – Soft Clay – Case-2

Node	Fitting Type	Fatigue Usage								
		1971 to 1998	998 1998 to 2003		2003 to 2021		2021 to 2050		Cumulative	
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)	
6220	900x50 Weldolet	1.35	0.06	0	0	0	0.04	0.01	1.46	
15920		0	0.01	0	0.05	0.01	0.87	0.11	1.05	
6180	900 x 900 Tee	0.82	0.03	0	0.01	0	0.12	0.02	1	
15990	900x200 Sweepolet	9.21	0.53	0.01	2.12	0.02	34.43	0.32	46.64	
15040		0.97	0.01	0.01	0.07	0.02	1.1	0.43	2.61	
410		0	0	0	0.17	0	2.84	0.05	3.06	
480		0	0	0	0.1	0	1.66	0.03	1.79	
6070	900 x 300 Sweepolet	0	0.06	0	0.06	0	0.97	0.07	1.16	

Table 13 – Fatigue Exceptions – Firm Clay – Case-2

		Soft Clay						
Node	Eitting Tuno		Case-1	Case-2				
Node	Fitting Type	Eviating	Pits Re	moved	Existing	Pits Removed		
		Existing	Pit-1,2 & 3	Pit-2 & 3		Pit-1,2 & 3	Pit-2 & 3	
15990	000v200 Sugaralat	2.96	2.35*	2.35*	9.18	3.14	3.13*	
480	900x200 Sweepolet	20 - 21	-	H	1.02	1.02	1.02	

Table 14 – Results Summary – Soft Clay

*lowest predicted fatigue usage

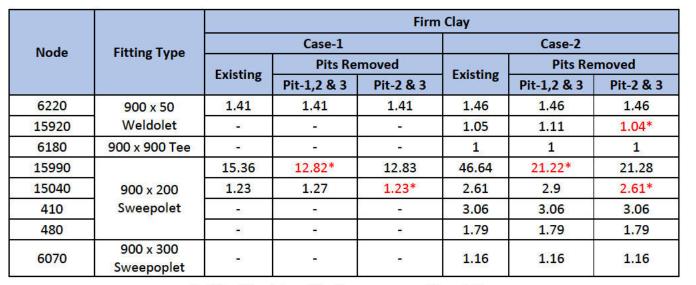
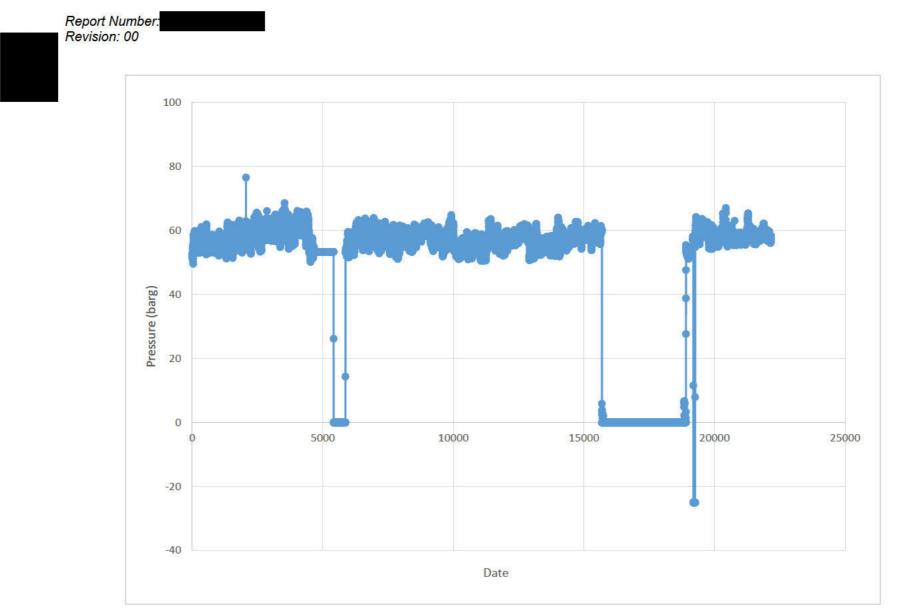
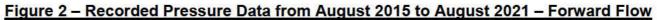
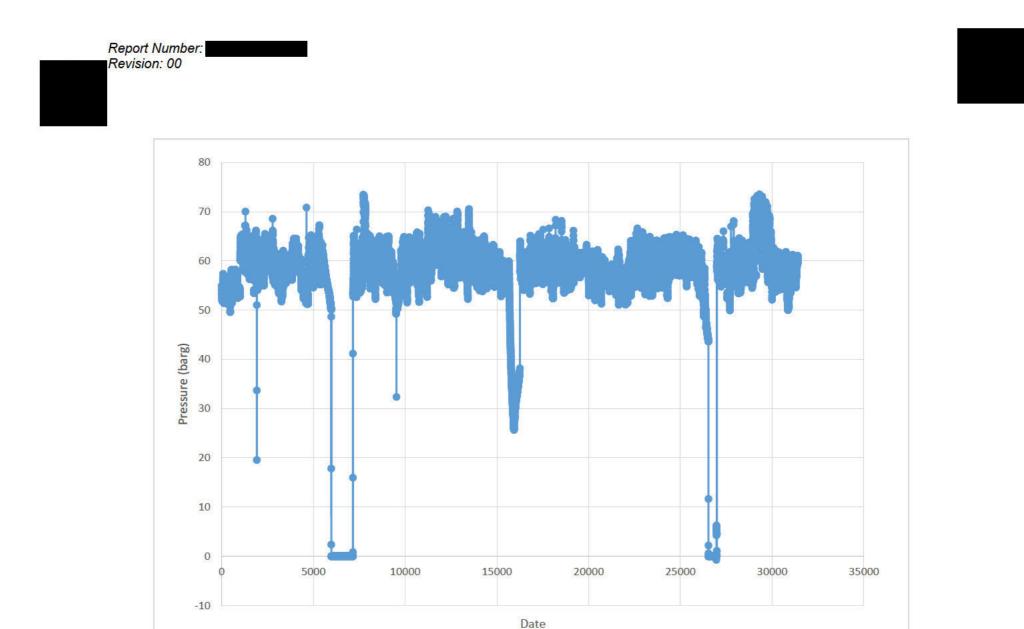
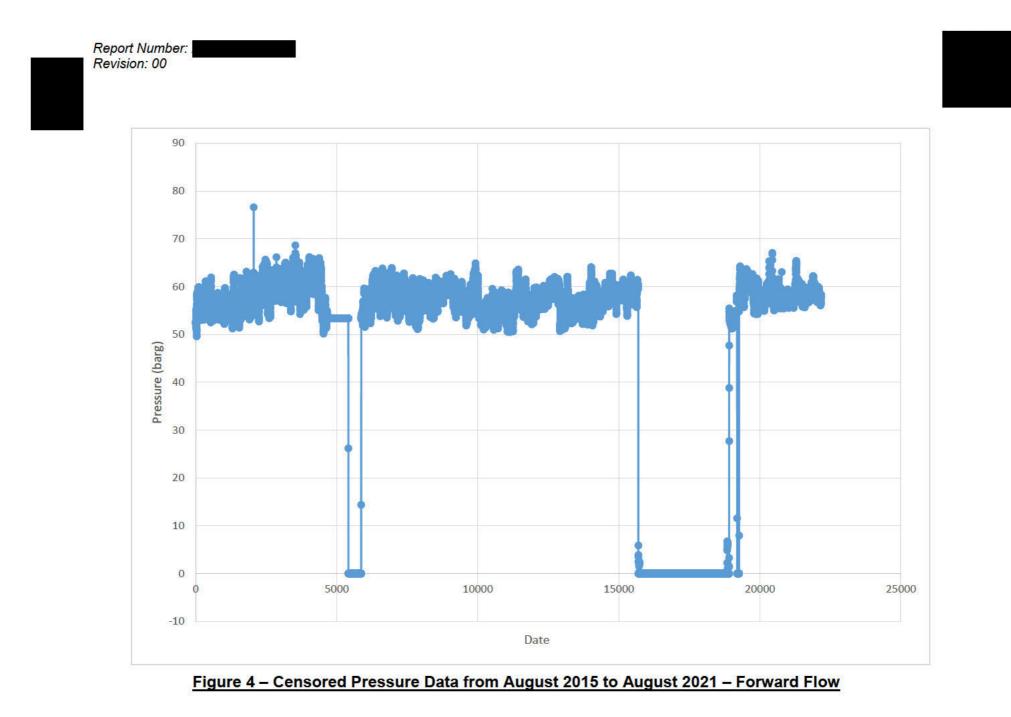


Table 15 – Results Summary – Firm Clay


*lowest predicted fatigue usage


Report Number: Revision: 00


FIGURES


Figure 1 – Location of Bi-directional Area

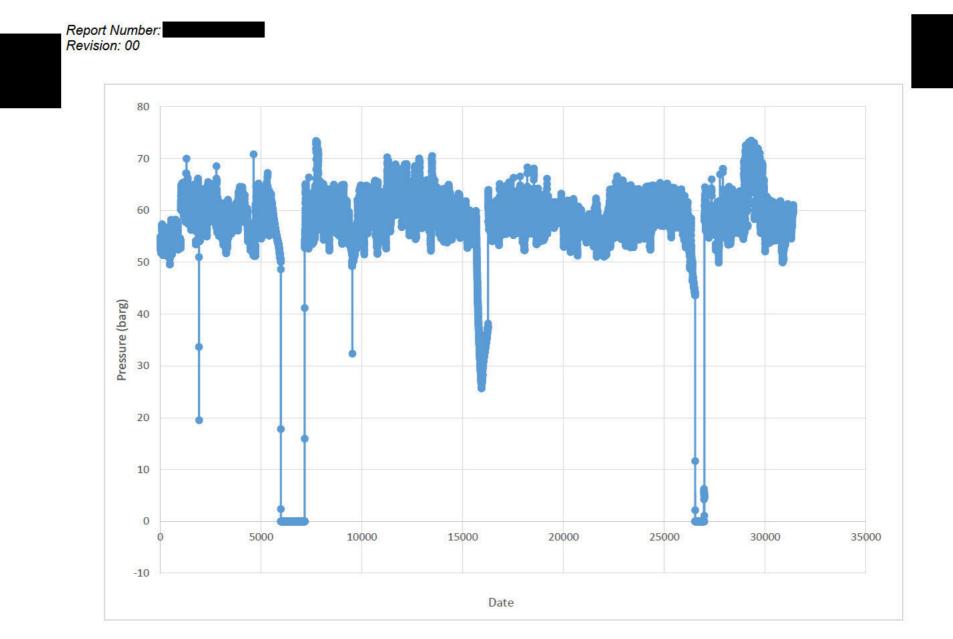


Figure 3 – Recorded Pressure Data from July 2015 to April 2021 – Reverse Flow

Figure 5 – Censored Pressure Data from July 2015 to April 2021 – Reverse Flow

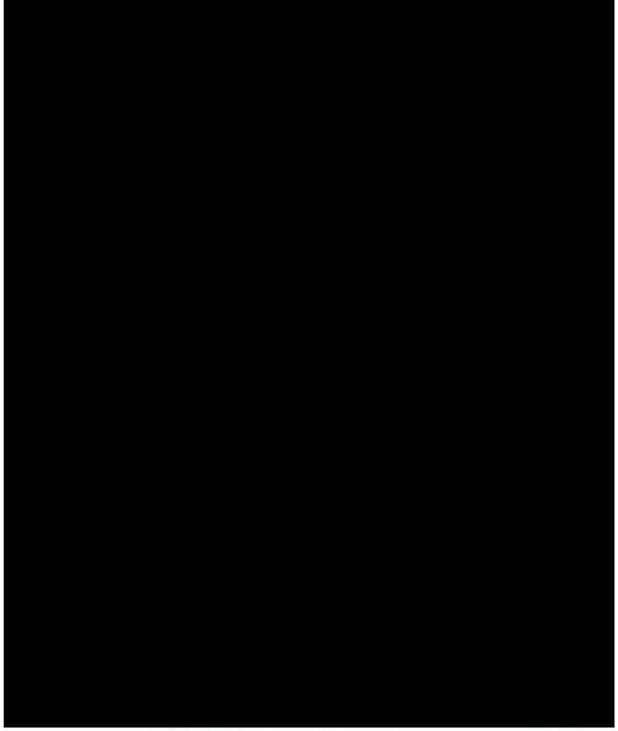
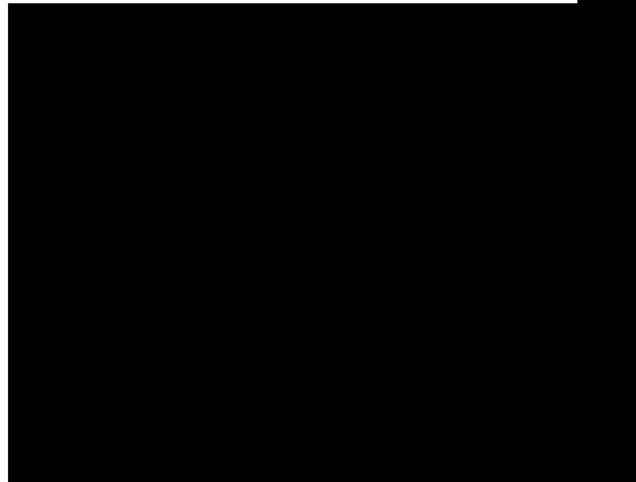



Figure 6 – Fatigue Exception Locations

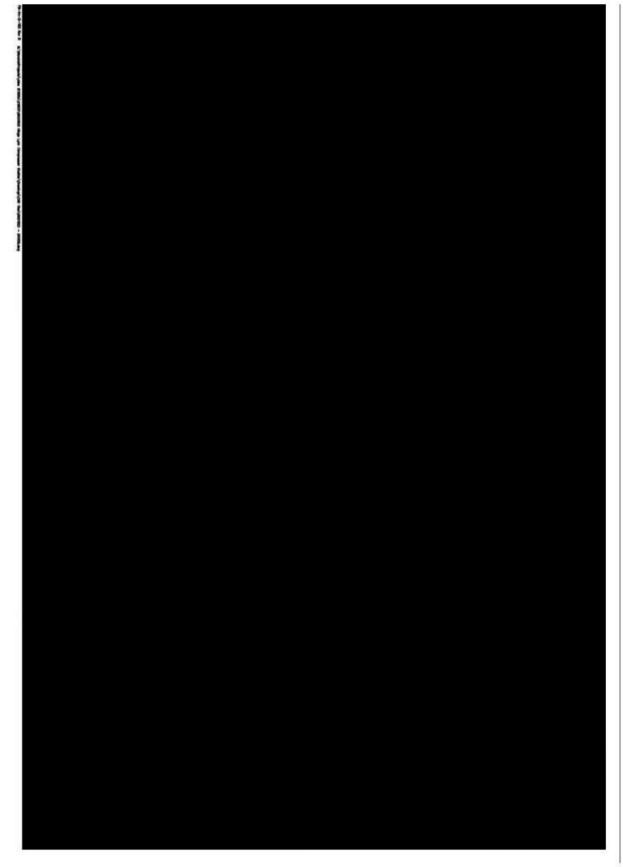

Report Number:	
Revision: 00	57.

Figure 7 – Fatigue Exception Locations Cont'd

Report Number:	
Revision: 00	

HISTORIC BOREHOLES

Report Number: Revision: 00

		R	ota				reh rd	nole	0	BH01A		Sheet 1 of 6	
hoject ID: GN21822									E:	572076	.00 N:	316	205.00
ocation: King's Lynn Compressor Station									Date	: 24/0	5/2018 - 31	/05/2018	
	Plant	used	Com	echi	o Mi	C405			SPT H	ammer Seri	al No: ADPO	4 (ER: 629	K)
to a set and the second			-	ê	8	8		ample / In	Situ Test Info	politramo			Installatio
Geology Description	Legend	Depth (m)	h-mage	TCR. 0	SCR 0	RQD.(Type	Depth	1	/ Remarks		Nepth (m) (Water)	Backfil
TOPSOL (Dark brown slightly sity gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse fint. Occasional rootlets present).		0.50					81 651	0.10					
Dark grey clayey gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse flint. Occasional pockets of black decaying organic matter			ŀ				80	0.60					
with faint organic odour.		1.25	ŧ				esa sema	1.10	N+9(2,2/2,2,2,2		1120	Deal	11
ight yellowish brown clayey gravelly fine to coarse AND. Gravel is angular to subangular fine and nedium flint.		1.90					01	1.30 1.80					
Soft grey mottled brown sandy CLAY with rare gravel of subrounded fine and medium fint.	x**	2.00	Ē				SPT(S) BA DB	2.00 2.00-2.50 2.30	NH9 (1,1/2,1,2,3	0	2.00	(0.00)	H
oft to firm black mottled dark grey silty CLAY with	x		ŧ				1	-					H
accasional gravel of subrounded fine fiint. Slight organic odour present.			ŧ				Di	2.80-2.00				10.000	1
From 2.80m: Occasional fine to coarse gravel-sized			F				sens	2.00	N+11 (2,1/2,2,2,	,49	2.00	(0.00)	11
fassil shell fragments and whole shells.	×		ŧ				05	2.50					H
At 3.70m: Rare coarse gravel-sized whole shell.	×		ŧ				274	and a second	1				H
	xxx xxx xxx		Ī				-	4.00-4.60					
From 4.60m to 5.00m: Locally frequent coarse sand-			E										
sized and fine gravel-sized shell and shell fragments.	- <u>x</u> -x		ŧ				06	5.00					
	× × ×		ŧ					5.50			1		H
From 5.50m: Becoming firm.	X-7-X		Ŧ				SPTIS		N+10 (1,2/0,1,2,			10.00)	H
From 6.00m: Locally frequent fine and medium	x		ŧ				85 07	600-650	1				11
gravel-sized shell fragments.	x		ŧ									20	
From 6.25m: Locally frequent fine to coarse gravel- sized fossil shell fragments.	× × ×		Ŧ	Π			sensi	6.50	N+30 (3,3/4,5,5,	A-9		(0.00)	
		-	ŧ		•	•	4	-	1				
			ŧ						1				
From 7.50m: Becoming firm to stiff. Fossil shell	× × ×		Ī			1							
fragments becoming rare. From 8.00m: Locally frequent fine and medium	X-7-2	-	ŧ		-			ŧ.					
sand-sized fassil shell fragments.	x		1	8	8	•	-	L-0-870					
	××_>		ŧ				100	100000					
At 8.80m: 150mm open subhorizontal fracture. Drilling-induced.	× × ×		ŧ	Ц			sense	9.00	NHIT (3,3/4,4,5,	40	6.50	(0.00)	
At 9.10m: 100mm open subhorizontal fissure.							DB	9.00				Constant of	
			ŧ	*	*	۰			1				25
	X_7X		ŧ				09	10.00					1
Hole Clameter by Depth Delling Hush Details						-	-	Water B			-	12-12-	-
Ah Base (n) Disenter (nn) Depth (n) 7 (pr. Return (N) 8.30 1.56 6.30-1.30 W/218 100 9.1.00 1.36 7.30-9.40 W/218 100	Date	Brile De	(*) ⁽ *)	0	-	-	H	Casing Dryth (n	n) Deer Hape	edjewij I	Londing Cover (in	-	Remarks.
NLSS 116 7.40-8.40 VATER 150 8.40-10.40 VATER 80													- and the set
Ren Ren	arks:		_	<u> </u>	_	-							
2. Inst stands	ipe GL to 1.0	1: SOmr Om plain	nstandp 1.00m	10 6	00m	n ska	ted, fitte	ed with gas ta	0.00m slotted, fi p and burg. Bot	th installed in	flush cover.		
gravel	-								6.00m gravel, 6				
6.0.8	ihrs daywork	c Mixing	mudini	io tar	± 25	VDS.	/18.7.0	Shrs dayworl	5.0.75hm days ke: Miking mud	into tank 29/C	8/1L		
10. 1h		leaning	out tank	a 30/	105/1				raning out tanks set Waiting for it				
	Concernance and	ALL PROPERTY	nes s	0.03									

Report Number: Revision: 00

		Rotary Borehole Record					BH	02	Sher	Sheet 1 of 6		
Project ID: GN21822									E: 5720	81.83	N: 31	6300.54
Location: King's Lynn Compressor Station									Date: 17	/05/2018	24/05/201	8
	Plant	net	Com	echie	M	405			SPT Hammer S	erial Nor Al	0804 (ER: 6)	1963
	1		(b-see		_							Installation
Geology Description	Legend	Depth (m)	1-400	10.0	SCR (%)	R QD. (N)	Type	Depth	-Situ Test Information Results / Remarks		e - Depth (m) sing (Water)	Backfill
MADE GROUND (Multicoloured GRAVEL with high cobble content. Gravel is subangular to subrounded medium and coarse first. Cobbles are first). MADE GROUND (Brown slightly silvy slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse first and concrete). MADE GROUND (Dark gray to dark brown slightly silvy gravelly fine to coarse first and concrete). MADE GROUND (Dark gray to dark brown slightly silv gravelly fine to coarse SAND with pockets of black fine to coarse sand. Gravel is angular to subrounded fine to coarse first. Hydrocarbon odour present). From 1.20m to 1.50m: Drilling flush cuttings. Light brown mottled brown slightly clayery fine to coarse SAND with rare gravel of subrounded fine and medium flint. Medium dense becoming dense grave slightly silty fine to coarse shall with occasional gravel of subrounded fine fint. From 1.80m to 1.30m: Sand becoming locally medium ond coarse with rare gravel of subrogular medium flint. From 4.50m: becoming slightly gravelly. Gravel is black is subrogular to subrounded fine and medium flint. Soft dark gray slightly sandy silty CLAY with occasional gravel of fine and medium flint. Soft dark gray slightly sandy silty CLAY with occasional gravel of fine and medium flint. From 5.60m: becoming locally very gravelly. From 5.60m: Becoming locally silty fine ond medium sond.		4.90 5.00					84 65 85 87 87 86 87 80 87 80 87 80 87 80 87 80 87 80 87 80 87 80 87 80 87 80 87 80 87 80 87 80 80 80 80 80 80 80 80 80 80 80 80 80	Lepin 0.20 0.20 0.20 1.20 1.20 1.20 1.20 1.20 2.00	Nex12 (1,3/5,6,6,6) Nex12 (1,3/5,6,6,6) Nex15 (4,7/11,11,11,11,11) Nex16 (1,3/2,2,2,2)		- (Dm) 2.00 (2.00) 2.00 (0.00) 6.00 (0.00)	×
From 5.90m: Becoming locally very sandy. Firm to stiff grey silty CLR/ with occasional gravel of fine to coarse fossil shell and fossil shell fragments.				8		•	92 HV05 SPT(5) 06 HV02	7.40 7.50 7.50 8.00	NH28 (8,3/5,4,5,4)		600 (0.00)	
From 8.50m: Gravel becoming rare fassil shell fragments. From 9.00m: Becoming occasionally mottled black.		-		8		0	87 93 08	8.60 8.30-9.00 9.00-9.10				
Table Classerier by Depth Delling Rich Delath.			-		-	_		Water Bo				
6.0 6.0 1.6 6.0 1	arks:	to 1.30e	•		78.8			Coding Draptin (in	nj Tene Depard (mina)	Manding Lev		formaria territage
3. 1hr 4. 1hr 5. 0.73 6. 0.47 7. 0.83	filb GL to 51. dayworks: Ad dayworks: Pu hrs dayworks hrs dayworks: Cle dayworks: Cle	ditional Red geol : Flush c : Flush g : Mixing	set up to bore and asing to probore mud int	t flust 12.0 back to tan	Om 2 to 1 k 21	11/0	5/18. 5/18. in 21/0/					

Report Number: Revision: 00

		R	ota				orel ord	nole		BH	03	She	et 1 of 6
roject ID: GN21822										E: 572:	130.02	N: 31	6292.03
ocation: King's Lynn Compressor Station										Date: 0	8/05/20	118 - 16/05/201	8
	Plant	used:	Com	rch	a M	C40	5			SPT Hammer S	Serial No	ADPO4 (ER: 6)	(34)
			-	12	8	8		ample / In	City Tor	t Informatio			Installatio
Geology Description	Legend	(m)	(maa)	TCR. 0	SCR 0	ROD.(Туре	Depth	-	esults / Remark	-	Date - Depth (m) Casing (Water)	Backfill
TOPSOIL (Dark brown slightly gravelly CLAX. Gravel is		0.30		F			-	0.00-0.40					
angular to subrounded fine to coarse fiint). MADE GROUND (Dark brown mottled brown slightly	1	0.40	ŧ				655 82	0.30					
sandy gravely CLAX. Gravel is angular to rounded fine	2450	0.60	1				650 83	0.55					
to coarse flint. Occasional cobbles of rounded flint). MADE GROUND (Dark brown mottled brown and		-	÷				653	0.80					-
black slightly clayey gravelly fine to coarse SAND.	112424	1.20	ŧ				SPTIS	1.20	N#18 (0,4	V4,6,5,4)		- (1.00)	
Gravel is angular to subrounded fine to medium flint.	$\mathcal{F}_{\mathcal{S}_{1}}^{\mathcal{S}_{2}}$		F									08/05/3018 - 1.20 - (1.20)	
Slight hydrocarbon odour present). Light brown mottled brown slightly clayey gravelly		1.80	ŧ						I .			08/05/2018 - 1.20	
fine to coarse SAND. Gravel is angular to subrounded	7.8		F .				84 D0	2.00-2.50				100	
fine to medium flint. Medium dense brown slightly gravelly fine to coarse	124	2.50	ŧ				10.072						
Medium dense brown slightly gravelly fine to coarse SAND, Gravel is subrounded fine fint.	A	-	ŧ				SPTIS	2.70	N#15 (1,1	12,2,2,20		2.70(1.00)	
From 1.60m: Becoming silty.	×_**		F				08	2.00					
Grey very clayey fine to medium SAND. Firm black mottled grey silty CLAY with occasional	×_*×		ŧ				-		1				
medium sand-sized fossil shell fragments.	_xx		ŧ.				DI	2.50	1				
From 2.70m to 3.20m: Drilling flush cuttings. From 3.40m: Becoming firm to stiff.	1-1-2	1.8	ŧ						I				
From 3.50m: Fossil shell fragments becoming	xX		ŧ				05	4.20	I				
frequent and fine to medium gravel-sized.	× × ×		ŧ				-	4.30-4.80					
From 3.80m to 3.90m: Band of locally grey silty fine to medium sand.	X		F .						I				
From 4.10m: Rare coarse gravel-sized fossilised	X X X		E.				06	5.00	I				
wood fragments. From 4.20m: Rare grey silty fine to medium sand.	xX		•				100	196.2	I				
From 4.20m: Have grey skey pre to medium sana.			ŧ				85	5.50-6.00					
	X	1.2	•						I				
From 6.00m: Becoming stiff and dark grey with	X-XX			F			SPT(S)	6.00	N+16 (2,1	(3,4,4,5)		eroo (proo)	
accasional fine to medium gravel-sized fassil shell	* **		ŧ				1	1000				08/05/2018 - 6.00	
frogments.			ŧ.			9			I			10/05/2018 - 6.00	
	X		Ł	1		1		È.	I			erao (1100)	
	X X X						-	7.00-7.50					
	xX		ŧ	⊢			SPTH	7.50	NADE	M.S.S.A		6.00 (1.00)	
From 7.75m to 7.80m: Open fissuring opprox. 3mm			1					7.80					
and medium spaced.	X		ŧ.		22		HVDI	8.00	I				
From 8.00m: Becoming locally firm.	X X X		ŧ.	2		E			I				
From 8.50m: Fossil shell fragments becoming	xX		F				Cores .	124	1				
occasional.			E.				HV02 DB	8.90	1				
From 9.00m: Rare coarse gravel-sized whole fassil shells.	_ <u>x</u> X	1					-	1.00-9.30	1				
	× × ×		ŧ	8	8	8	HV08	9.50	1				
	xX		ŧ				me	1000	1				
and the second state of the second			t				010	10.00					
Pade Clameter by Depth Delling Rack Details	Date	Brite De	-		-	Inda		Water Bit		ne Obyceni (minc)	Nest	y Level (m)	Security.
620 146 620-7.50 WATER 120 29 51.20 116 7.50-5.20 WATER 120	09-0818	-						1000		100 C 100 C	6	1000 B	Installe
8.20-30.00 WATE 300													
Coding Diameter by Depth	arks:			-			-						
the second s	ection pit GL												
										op time 06/05/1 ecting water 09			
	hrs dayworks standing time							tanding time:	Waiting fo	ar kill 09/05/18.	2		
10.7.5	hrs dayworks	: Chang	i flush k	tani	ka ar	nd b	orehole	and dean out			and the second		
										aria: Mixing mu ting for permit 1			
15, 1h	r standing tim	ec Walt	ng to re	placi	ng h	ydra	ulic hose	15/05/18.1	6. Ihr day	works: Travel to	Pirtek to	ts hose 16/05/1	
	hrs dayworks: N							VOSVIR IR I	hrstandir	g time: Waiting	for insta	dation details 16/	05/18
	ged by: J	-		-	-	-	-	Checked			_	T. State	R-3070-Rev.

PROPOSED REMOVAL OF PITS ON FEEDER 2 PIPING

There are currently three pits located on the Feeder 2 piping (as shown in Figure 1) which National Grid are considering demolishing and backfilling with native soil.

The following CAESARII piping models have been created to consider the fatigue usage from 2021 to 2050 with the pits removed.

- 2021-2050_FF_FIRM_CLAY_NO_PITS.C2
- 2021-2050_FF_SOFT_CLAY_NO_PITS.C2
- 2021-2050_RF_FIRM_CLAY_NO_PITS.C2
- 2021-2050_RF_SOFT_CLAY_NO_PITS.C2
- 2021-2050_X10_FF_FIRM_CLAY_NO_PITS.C2
- 2021-2050_X10_RF_FIRM_CLAY_NO_PITS.C2
- 2021-2050_X10_FF_SOFT_CLAY_NO_PITS.C2
- 2021-2050_X10_RF_SOFT_CLAY_NO_PITS.C2

The number of fatigue cycles considered, and model identifiers are provided in Table B1 and Table B2 for the un-factored and factored fatigue cycles, respectively.

CASE-1 (NON-FACTORED FATIGUE USAGE)

Considering fatigue cycling from 1971 to 2050, the predict usage is greater than unity at four locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6160).
- 900mm x 50mm weldolet (Node 6220).
- 900mm x 200mm sweepolet (Node 15990).
- 900mm x 200mm sweepolet (Node 15040).

The maximum fatigue usage is 12.82 (at Node 15990) for the model with firm clay soil properties.

The locations of the fatigue exceptions are shown in Figure 9 and details are provided in Table B3 and Table B4.

CASE-2 (FACTORED FATIGUE USAGE)

For the Case-2 assessment, whereby the number of fatigue cycles for 2021 to 2050 have been factored, the predict usage is greater than unity at nine locations. A summary of the exceptions is shown below:

• 900mm x 50mm weldolet (Node 6070)

- 900mm x 50mm weldolet (Node 6160)
- 900mm x 50mm weldolet (Node 6220)
- 900mm x 200mm weldolet (Node 410)
- 900mm x 200mm weldolet (Node 480)
- 900mm x 200mm sweepolet (Node 15990)
- 900mm x 200mm sweepolet (Node 15040)
- 900mm x 300mm Sweepolet (Node 15920)
- 900mm x 900mm Tee (Node 6180)

The maximum fatigue usage is 21.22 (at Node 15990) for the model with firm clay soil properties.

The locations of the fatigue exceptions are shown in Figure 9 and details are provided in Table B5 and Table B6.

Comparing the results for Case-1 (non-factored fatigue usage from 2021 to 2050) it can be seen the removal of the pits has a beneficial effect on the two 900mm x 200mm sweepolets located in the region of Pit-2 and Pit-3.

Comparing the results of Case-2 (fatigue usage factored from 2021 to 2050) it can be seen the removal of the pits has both a beneficial and detrimental effect on the predicted fatigue usage for different regions of the site. Specifically, the fatigue usage at Node 15990 reduces from 46.64 to 21.22. However, an exception is introduced on a 900mm x 300mm sweepolet, at Node 15920. The exception is most likely due to the removal of Pit-1.

Report Number:	
Revision: 00	

			2		22	Number	of Cycles							
Case	Combination	Identifier	IGE/1	FD/12	Rainflow-counting									
Case			Models: 1	971-1998*	Models: 1	998-2003*	Models: 2	003-2021*	Models: 2021-2050*					
			Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow				
L1	W+T1+P1	OPE							51 E	E E				
L2	W	OPE			* *	* *	* *	* *	NO_PITS NO_PITS	d ON				
L3	W+T1+P2	OPE	e e	CLAY	r_cues: aue	dels: 1_CLA	r_cus	dels: 1_cta	odels: 					
L4	W+T2+P2	OPE		SOFT	FIRM	FIR	FIRE	FER	I IIM SOFT	SOFT SOFT				
L5	W+T3+P3	OPE		Cesar II Models: 1971_SoFT_CLAY 1971_FIRM_CLAY	Caesar II Models: 1988. FF. SOFT. CLAY 1998. FF. FIRM_CLAY	Caesar II Models: 1998_RF_SOFT_CLAY 1998_RF_FIRM_CLAY	Caesar II Models: 2003_FF_SOFT_CLAY 2003_FF_FIRM_CLAY	Geeser II Models: 2003_RF_SOFT_CLAY 2003_RF_FIRM_CLAY	Caesa 0_FF_0	Caesa RF_				
L6	W+T4+P4	OPE	2	De Malendel		10	20	20	Caesar II Mr 2021-2050_FF_SOFT 2021-2050_FF_FRM	Caesar II Models: 2021-2050, RF, SOFT, CLAY_NO_ PITS 2021-2050, RF, FIRM_CLAY_NO_ PITS				
L7	W+T5+P5	OPE					-		202	202				
L8	L1-L2	FAT	0	4	0	0	4	4	2	2				
L9	L3-L2	FAT	0	27	1	2	12	22	7	13				
L10	L4-L5	FAT	0	675	5	53	46	502	29	310				
L11	L4-L6	FAT	0	5400	31	81	294	765	181	472				
L12	L3-L7	FAT	0	4050	139	265	1310	2495	809	1539				

Table B1 - Loadcase Combinations for CAESAR II – Pits Removed – Case-1

*See Section 2.2 for applicable models

Report Number:	
Revision: 00	

			2			Number	of Cycles							
Case	Combination	Identifier	IGE/1	FD/12	Rainflow-counting									
Case			Models: 1	971-1998*	Models: 1	998-2003*	Models: 2	003-2021*	Models: 2021-2050*					
			Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow				
L1	W+T1+P1	OPE							STIM STIM	RITA IN				
L2	W	OPE			* *	* *	* *	* *	ON	2 2				
L3	W+T1+P2	OPE	e e	CLAY	r_cues:		r_das:	dels: 1_CLA	dels: CLAY_	dels: CLAY				
L4	W+T2+P2	OPE		SOFT	Caesar II Models: 1998_FF_SOFT_CLAY 1998_FF_FIRM_CLAY	Caesar II Models: 1998_RF_SOFT_CLAY 1998_RF_FIRM_CLAY	<mark>Gesar II Models</mark> 2003_FF_SOFT_CL 2003_FF_FIRM_CL	Caesar II Models: 2003_RF_SOFT_CLAY 2003_RF_FIRM_CLAY	<u>rr II Models:</u> 2021- SOFT_CLAY_ 2021- FIRM_CLAY_	rr II Mo 2021- SOFT 2021- FIRM				
L5	W+T3+P3	OPE		Cesar II Models: 1971_SOFT_CLAY 1971_FIRM_CLAY	Caesa 998_FI 998_FI	Caesa 998_F 998_F	98_RI 98_RI 98_RI	Caesa 003_FF	03_RI 03_R	EF E	RF RF			
L6	W+T4+P4	OPE	2	Der Marian	11	11	× ×	20	<mark>. Gae</mark> 2050_X10_FF 2050_X10_FF	0_X10				
L7	W+T5+P5	OPE							2050	205				
L8	L1-L2	FAT	0	4	0	0	4	4	20	20				
L9	L3-L2	FAT	0	27	1	2	12	22	70	1320				
L10	L4-L5	FAT	0	675	5	53	46	502	290	3100				
L11	L4-L6	FAT	0	5400	31	81	294	765	1810	4720				
L12	L3-L7	FAT	0	4050	139	265	1310	2495	8090	15390				

Table B2- Loadcase Combinations for CAESAR II – Pits Removed – Case-2

Report Number:	
Revision: 00	

			Fatigue Usage											
Node	Fitting Type	1971 to 1998 1998 to 2003		2003 t	o 2021	2021 to	Cumulative							
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)					
6160	900x50 Weldolet	0.89	0.04	0	0.04	0	0.06	0.01	1.04					
15990*	900x200 Sweepolet	1.74	0.1	0	0.42	0.01	0.08	0	2.35					

Table B3 – Fatigue Exceptions – Soft Clay – Pits Removed – Case-1

**fatigue exception reduced by removal of pits

9					Fatig	jue Usage			
Node	Fitting Type	1971 to 1998	1998 to	2003	2003 t	o 2021	2021 t	Cumulative	
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)
6160		3.66	0.13	0	0.08	0.01	0.14	0.01	4.03
6220	900x50 Weldolet	1.35	0.06	0	0	0	0	0	1.41
15990**	000v200 Sweenslet	9.21	0.53	0.01	2.12	0.02	0.92	0.01	12.82
15040*	900x200 Sweepolet	0.97	0.01	0.01	0.07	0.02	0.14	0.05	1.27

Table B4 – Fatigue Exceptions – Firm Clay - Pits Removed – Case-1

*fatigue exception exacerbated by removal of pits

**fatigue exception reduced by removal of pits

Report Number:	
Revision: 00	

		Fatigue Usage								
Node	Fitting Type	1971 to 1998	171 to 1998 1998 to 2003		2003 to 2021		2021 to 2050		Cumulative	
nouo		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)	
6160	900x50 Weldolet	0.89	0.04	0	0.04	0	0.6	0.07	1.64	
15990*	900x200 Sweepolet	1.74	0.1	0	0.42	0.01	0.84	0.03	3.14	
480		0	0	0	0.06	0	0.92	0.04	1.02	

Table B5 – Fatigue Exceptions – Soft Clay – Pits Removed – Case-2

*fatigue exception reduced by removal of pits

Report Number:	
Revision: 00	

		Fatigue Usage									
Node	Fitting Type	1971 to 1998	1998 to 2003		2003 to 2021		2021 to 2050		Cumulative		
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)		
6160	900x50 Weldolet	3.66	0.13	0	0.08	0.01	1.38	0.12	5.38		
6220		1.35	0.06	0	0	0	0.04	0.01	1.46		
15920*		0	0.01	0	0.05	0.01	0.93	0.11	1.11		
6180	900 x 900 Tee	0.82	0.03	0	0.01	0	0.12	0.02	1		
15990**		9.21	0.53	0.01	2.12	0.02	9.23/2.25***	0.1/0.04***	21.22/14.18***		
15040*	000-200 Surger alat	0.97	0.01	0.01	0.07	0.02	1.37	0.48	2.9		
410	900x200 Sweepolet	0	0	0	0.17	0	2.84	0.05	3.06		
480		0	0	0	0.1	0	1.66	0.03	1.79		
6070	900x300 Sweepolet	0	0.06	0	0.06	0	0.97	0.07	1.16		

Table B6 – Fatigue Exceptions – Firm Clay - Pits Removed – Case-2

*fatigue exception exacerbated by removal of pits **fatigue exception reduced by removal of pits ***Loose sand backfill after removal of pits

REMOVAL OF PIT-2 AND PIT-3 ONLY

Previous analyses, detailed in the main section of this report, considered the removal of all three pits, Pit-1, Pit-2 and Pit-3 (See Figure 1 for pit locations), at Kings Lynn. It was shown that this resulted in both positive and detrimental effects to the observed fatigue usage in the region of the proposed modifications.

Due to the close proximity of Pit-1 to Pit-2 an additional assessment has been undertaken, to better understand the influence of each pit, by considering the removal of Pit-2 and Pit-3 only. The results of the study is presented in the below.

.1 MODELS

- 2021-2050_FF_FIRM_CLAY_NO_PITS2.C2
- 2021-2050_FF_SOFT_CLAY_NO_PITS2.C2
- 2021-2050_RF_FIRM_CLAY_NO_PITS2.C2
- 2021-2050_RF_SOFT_CLAY_NO_PITS2.C2
- 2021-2050_X10_FF_FIRM_CLAY_NO_PITS2.C2
- 2021-2050_X10_RF_FIRM_CLAY_NO_PITS2.C2
- 2021-2050_X10_FF_SOFT_CLAY_NO_PITS2.C2
- 2021-2050_X10_RF_SOFT_CLAY_NO_PITS2.C2

The number of fatigue cycles considered, and model identifiers are provided in Table C1 and Table C2 for the un-factored and factored fatigue cycles, respectively.

CASE-1 (NON-FACTORED FATIGUE USAGE)

Considering fatigue cycling from 1971 to 2050, the predict usage is greater than unity at four locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6160).
- 900mm x 50mm weldolet (Node 6220).
- 900mm x 200mm sweepolet (Node 15990).
- 900mm x 200mm sweepolet (Node 15040).

The maximum fatigue usage is 12.83 (at Node 15990) for the model with firm clay soil properties.

The locations of the fatigue exceptions are shown in Figure 9 and details are provided in Table C3 and Table C4.

CASE-2 (FACTORED FATIGUE USAGE)

For the Case-2 assessment, whereby the number of fatigue cycles for 2021 to 2050 have been factored, the predict usage is greater than unity at nine locations. A summary of the exceptions is shown below:

- 900mm x 50mm weldolet (Node 6070)
- 900mm x 50mm weldolet (Node 6160)
- 900mm x 50mm weldolet (Node 6220)
- 900mm x 200mm weldolet (Node 410)
- 900mm x 200mm weldolet (Node 480)
- 900mm x 200mm sweepolet (Node 15990)
- 900mm x 200mm sweepolet (Node 15040)
- 900mm x 300mm Sweepolet (Node 15920)
- 900mm x 900mm Tee (Node 6180)

The maximum fatigue usage is 21.28 (at Node 15990) for the model with firm clay soil properties.

The locations of the fatigue exceptions are shown in Figure 9 and details are provided in Table B5 and Table B6.

Comparing the results for Case-1 (non-factored fatigue usage from 2021 to 2050) it can be seen the removal of the pits has a beneficial effect on the two 900mm x 200mm sweepolet at node 15990.

Comparing the results of Case-2 (fatigue usage factored from 2021 to 2050) it can be seen the removal of the pits has a beneficial effect on the predicted fatigue usage at node 15990 whilst all other locations remain unaffected.

Report Number:	
Revision: 00	

			Number of Cycles										
Case	Combination	Identifier	IGE/1	FD/12		Rainflow-counting							
Case			Models: 1	971-1998*	Models: 1	998-2003*	Models: 2	003-2021*	Models: 2	021-2050*			
			Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow			
L1	W+T1+P1	OPE								2 2			
L2	W	OPE		Caesar II Models: 1971_SOFT_CLAY 1971_FIRM_CLAY	* *	* *	* *	* *	PITS2	PITS2			
L3	W+T1+P2	OPE			r_cues:	dels: 1_CLA	Cassar II Models: 2003_FF_SOFT_CLAY 2003_FF_FIRM_CLAY	Caesar II Models: 2003_FF_SOFT_CLAY 2003_FF_FIRM_CLAY Caesar II Models: Caesar II Models: 2003_RF_SOFT_CLAY 2003_RF_SOFT_CLAY	<u>v_no</u> v_no	x <u>dels:</u> rv_no			
L4	W+T2+P2	OPE			FIRM		FIRM	Coesar II Models: 2021- F_SOFT_CLAY_NO 2021- F_FIRM_CLAY_NO	Caesar II Models: 2021- F_SOFT_CLAY_NO_ 2021- F_FIRM_CLAY_NO_				
L5	W+T3+P3	OPE		Caesa 1971_ 1971_	Caesar II Models: 1998, FF., SOFT_CLAY 1998, FF., FIRM_CLAY Caesar II Models: 1998, RF., SOFT_CLAY 1998, RF., SOFT_CLAY	03_F	Caesa 003_R						
L6	W+T4+P4	OPE				1 1	<u>я</u> я	~~~~	2050_F 2050_F	2050_R			
L7	W+T5+P5	OPE			3 5		2 5			5 2			
L8	L1-L2	FAT	0	4	0	0	4	4	2	2			
L9	L3-L2	FAT	0	27	1	2	12	22	7	13			
L10	L4-L5	FAT	0	675	5	53	46	502	29	310			
L11	L4-L6	FAT	0	5400	31	81	294	765	181	472			
L12	L3-L7	FAT	0	4050	139	265	1310	2495	809	1539			

Table C1 - Loadcase Combinations for CAESAR II – Pits Removed – Case-1

*See Section 2.2 for applicable models

Report Number:		
Revision: 00	37	

			Number of Cycles									
Case	Combination	Identifier	IGE/1	FD/12	Rainflow-counting							
Case			Models: 1	971-1998*	Models: 1	998-2003*	Models: 2	003-2021*	Models: 2	021-2050*		
			Forward Flow	Reverse Flow Forward Flo		Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow		
L1	W+T1+P1	OPE							TS2 TS2	PITS2		
L2	W	OPE		<mark>Caesar II Models:</mark> 1971_SOFT_CLAY 1971_FIRM_CLAY	* *	* *		* *		9 9		
L3	W+T1+P2	OPE	S.		r_dels:	Adels: A_CLA	r_des:	Gaesar II Models: 2003_FF_SOFT_CLAY 2003_FF_FIRM_CLAY 2003_FF_SOFT_CLAY 2003_FF_SOFT_CLAY 2003_FF_FIRM_CLAY	CLAY_1 CLAY_1 CLAY_1	CLAY_D		
L4	W+T2+P2	OPE	4 4		FIRM	Caesar II Models: 1998_FF_FIRM_CLAY 1998_FF_FIRM_CLAY 1998_FF_SIOFT_CLAY 1998_FF_FIRM_CLAY 1998_FF_FIRM_CLAY 2003_FF_SIOFT_CLAY 2003_FF_FIRM_CLAY	FIRM	2021- 2021- 2021- 2021- FIRM_0	2021- 2021- SOFT_CL 2021- FIRM_CL			
L5	W+T3+P3	OPE		Caesa 1971 1971	Caesa 398_FI 398_FI		Caesa 003_F1 003_F1	03_R 03_R 03_R	Caesa X10_FF_5 X10_FF_F	RF RF		
L6	W+T4+P4	OPE		2019-050822,0300	H H		2 N	22		01X_0		
L7	W+T5+P5	OPE			2 5				2050.	205		
L8	L1-L2	FAT	0	4	0	0	4	4	20	20		
L9	L3-L2	FAT	0	27	1	2	12	22	70	1320		
L10	L4-L5	FAT	0	675	5	53	46	502	290	3100		
L11	L4-L6	FAT	0	5400	31	81	294	765	1810	4720		
L12	L3-L7	FAT	0	4050	139	265	1310	2495	8090	15390		

Table C2- Loadcase Combinations for CAESAR II – Pits Removed – Case-2

Report Number:	
Revision: 00	

Node	Fitting Type		Fatigue Usage							
		1971 to 1998	1998 1	to 2003	2003 t	o 2021	2021 to	o 2050	Cumulative	
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)	
6160	900x50 Weldolet	0.89	0.04	0	0.04	0	0.06	0.01	1.04	
15990*	900x200 Sweepolet	1.74	0.1	0	0.42	0.01	0.08	0	2.35	

Table C3 – Fatigue Exceptions – Soft Clay – Pit-2 & Pit-3 Removed – Case-1

*fatigue exception reduced by removal of pits

Node		Fatigue Usage								
	Fitting Type	1971 to 1998	1998 to 2003		2003 to 2021		2021 to 2050		Cumulative	
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)	
6160		3.66	0.13	0	0.08	0.01	0.14	0.01	4.03	
6220	900x50 Weldolet	1.35	0.06	0	0	0	0	0	1.41	
15990*	900x200 Sweepolet	9.21	0.53	0.01	2.12	0.02	0.93	0.01	12.83	
15040		0.97	0.01	0.01	0.07	0.02	0.11	0.04	1.23	

Table C4 – Fatigue Exceptions – Firm Clay - Pits Removed – Case-1

*fatigue exception reduced by removal of pits

Report Number:	
Revision: 00	

	Fitting Type	Fatigue Usage								
Node		1971 to 1998	1998 to 2003		2003 to 2021		2021 to 2050		Cumulative	
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	ard Fatigue	
6160*	900x50 Weldolet	0.89	0.04	0	0.04	0	0.6	0.07	1.64	
15990*	900x200 Sweepolet	1.74	0.1	0	0.42	0.01	0.83	0.03	3.13	
480		0	0	0	0.06	0	0.92	0.04	1.02	

Table C5 – Fatigue Exceptions – Soft Clay – Pits Removed – Case-2

*fatigue exception reduced by removal of pits

Report Number:	
Revision: 00	

Node	Fitting Type	Fatigue Usage							
		1971 to 1998	1998 to 2003		2003 to 2021		2021 to 2050		Cumulative
		Reverse Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Reverse Flow	Forward Flow	Fatigue Damage (D _f)
6160	900x50 Weldolet	3.66	0.13	0	0.08	0.01	1.38	0.12	5.38
6220		1.35	0.06	0	0	0	0.04	0.01	1.46
6180	900 x 900 Tee	0.82	0.03	0	0.01	0	0.12	0.02	1
15990**	900x200 Sweepolet	9.21	0.53	0.01	2.12	0.02	9.23	0.1	21.28
15040		0.97	0.01	0.01	0.07	0.02	1.11	0.42	2.61
410		0	0	0	0.17	0	2.84	0.05	3.06
480		0	0	0	0.1	0	1.66	0.03	1.79
6070	900x300 Sweepolet	0	0.06	0	0.06	0	0.97	0.07	1.16
15920		0	0.01	0	0.05	0.01	0.86	0.11	1.04

Table C6 – Fatigue Exceptions – Firm Clay - Pits Removed – Case-2

**fatigue exception reduced by removal of pits